OUTCOMES RESEARCH USING A LEARNING HEALTH SYSTEM: PROMISE & PITFALLS

Richard L. Tannen, M.D.

University of Pennsylvania Perelman School of Medicine KFF director of Medical research

u

- More than a decade ago, similar to Joe Kanter, we had the vision that a robust electronic amalgamation of patient health records had the potential to TRANSFORM FUTURE HEALTHCARE.
- Therefore we embarked on an investigative strategy to determine whether this strategy was feasible.
- SHORT ANSWER: INDEED IT IS

RANDOMIZED CONTROLLED TRIAL STUDIES (RCTs)

• RCTs are the most reliable method for outcomes research, i.e. to determine whether a therapy really works, because randomization produces treated and untreated groups that are similar.

• RCTs suffer from many constraints including:

- cost,
- long duration to obtain results,
- RESTRICTION that their results apply only to the specific population studied in the RCT.
- For example, RCT findings typically cannot be extrapolated reliably to determine:
 - whether women and men, or whether all age groups respond in the same fashion,
 - how patients in the real world who do not fit the characteristics of the RCT population will respond.

Non-Randomized (Observational) Studies

- Non-randomized studies using amalgamated healthcare data can overcome the RCT constraints; however, the treated and untreated populations typically exhibit different characteristics.
- Sophisticated statistical analytical techniques can reliably overcome identified differences in characteristics of the treated and untreated groups.
- However, if crucial differences in characteristics are not identifiable ("Unidentified Confounding") INCORRECT RESULTS WILL RESULT.

RECENT LAY PRESS ARTICLE

- On its front page, the <u>Wall Street Journal</u> (5/3/2012) reports on the increase in observational studies, despite that fact that these studies, according to some researchers, produce findings that are not as reliable as controlled studies.
- In contrast to this report, our recent studies, published 3 years ago in BMJ, describe a new method that surmounts this problem.

RIGOROUS EXAMINATION OF EMR DATABASE POTENTIAL

- Replicate previously performed RCTs using the data from an EMR database, except for "RANDOMIZATION".
- VALIDITY of database outcome results were assessed by comparison with the RCT results, which were presumed to reflect correct answers.

KEY FEATURES – UK GPRD

- Approximately 10M patient records
- Representative sample of entire UK
 population
- All healthcare centralized in GP record, so all key patient health events are captured
- Complete Iongitudinal record of care
- Includes All medications prescribed, so comprehensive treatment record

COMPARISON GPRD to RCT RESULTS

Cardiovascular outcomes (Myocardial Infarction, Stroke or Coronary Revascularization) from 5 different RCT's were analyzed.

 $\mathbf{GPRD} = \mathbf{RCT} \quad \mathbf{6} \quad \mathbf{GPRD} \neq \mathbf{RCT} \quad \mathbf{8}$

Different results presumably due to "Unidentified Confounding"

NEW METHOD TO OVERCOME "UNIDENTIFIED CONFOUNDING"

- Developed a new statistical method (PRIOR EVENT RATE RATIO [PERR]) to address "Unidentified Confounding"
- PERR can assess the validity of RESULTS by comparison with standard analytical techniques
- PERR also can produce reliable RESULTS, similar to the RCT

COMPARISON of GPRD-PERR vs GPRD (standard analysis)

ASSESSMENT OF VALIDITY

GPRD = RCT	6	GPRD ≠ RCT	8
GPRD-PERR = GPRD	6	GPRD-PERR ≠ GPRD	7

RELIABILITY OF GPRD-PERR

GPRD-PERR = RCT	11 / 14
GPRD-PERR ≠ RCT	3 / 14*

*When the GPRD-PERR differed from the RCT, it was always more similar to the RCT than the GPRD (standard analysis)

SUMMARY - PERR

UNIDENTIFIED CONFOUNDING NOT PRESENT UNIDENTIFIED CONFOUNDING PRESENT

PROOF OF PRINCIPLE

- Our studies demonstrate PROOF OF PRINCIPLE:
 - A properly constructed large LEARNING HEALTH SYSTEM can produce RELIABLE answers to OUTCOMES RESEARCH

- IT CAN TRANSFORM HEALTHCARE

REFERENCES

- 1. Tannen RL, Weiner MG, Xie D. Use of primary care electronic medical record database in drug efficacy research on cardiovascular outcomes: comparison of database and randomized controlled trial findings. BMJ 2009, 338; b81
- Yu M, Xie D, Wang X, Weiner MG, Tannen RL. Prior event rate ratio adjustment: numerical studies of a statistical method to address unrecognized confounding in observational studies. Pharmacoepidemiology and Drug Safety 2012; 21(S2): 60–68

FUTURE CHALLENGES

What are the future challenges?

- Implement a sufficient large information set in the US to facilitate OUTCOME STUDIES (we project that 50+ million patient records are needed).
- Demonstrate rigorously that this "Database" can yield reliable answers to Outcomes Research
- Develop additional methodologies to address "UNIDENTIFIED CONFOUDING". (Our studies demonstrate such methods can be developed, but OUR METHOD will not be applicable to all health issues)

SUMMARY of RCT versus GPRD REPLICATIONS

Summary of RCT versus GPRD Replications with PERR correction

